Устройства однофазногоВ силу универсальности цифровой формы представления информации цифровые электронные вычислительные машины представляют собой наиболее универсальный тип устройства обработки информации. Именно эти машины, EI дальнейшем называемые сокращенно ЭВМ, составляют предмет изучения в настоящей книге.
Положительный опыт разработки и применения малых ЭВМ оказал влияние на направление развития интегральной электроники. При переходе от схем с малой и средней степенями интеграции к интегральным микросхемам с большой и сверхбольшой степенями интеграции (БИС и СБИС) возникает проблема их применимости. Интегральную микросхему с большой степенью интеграции (БИС), содержащую тысячи логических элементов, не говоря о СБИС с ее десятками тысяч и более элементов, если это не схема памяти, трудно сделать пригодной для широкого круга потребителей. Первоначально считалось, что на основе автоматизированного проектирования будут выпускаться заказные БИС и СБИС, изготовляемые по индивидуальным требованиям заказчиков. Однако в дальнейшем оказался возможным и другой путь — создание на одной или нескольких БИС или СБИС функционально законченного (8—16 разрядов и более) устройства обработки информации. Это устройство (микросхему или несколько образующих его микросхем) называют микропроцессором, так как оно по своим логическим функциям и структуре напоминает упрощенный вариант процессора обычных ЭВМ. Микропроцессоры (МП) по быстродействию и возможностям системы команд приближаются к процессорам малых ЭВМ. Однако из-за ограниченного числа выводов корпуса МП (обычно 42) трудно реализовать интерфейс МП с внешним оборудованием с высокой пропускной способностью. В табл. 1.1 приведены характеристики некоторых микропроцессоров.
о знаках и особых значениях операндов, их отдельных разрядов, особых значениях промежуточных и конечных результатов операции (например, равенство нулю результата операции и др.). Процесс функционирования во времени устройства обработки цифровой информации состоит из последовательности тактовых интервалов, в которых операционный блок производит определенные элементарные операции преобразования слов. .Операционный блок выполняет некоторый набор элементарных преобразований информации, например таких, как передача слова из одного в другой, взятие обратного кода, сдвиг и др. Выполнение этих элементарных операций инициируется поступлением в операционный блок соответствующих управляющих сигналов из некоторого множества сигналов
и СБИС), содержащих на одном кристалле (в одном корпусе) несколько десятков тысяч, а в последних разработках сотни тысяч элементарных транзисторов. На основе таких схем в последние годы удалось создать микропроцессоры — функционально законченные, управляемые хранимой в памяти программой (большей частью малоразрядные) устройства обработки цифровой информации, выполненные в виде одной или нескольких БИС или СБИС.
Вычислительная техника в своем развитии по пути повышения быстродействия ЭВМ приблизилась к физическим пределам. Время переключения электронных схем% достигло долей наносекунды, а скорость распространения сигналов в линиях, связывающих элементы и узлы машины, ограничена значением 30 см/не (скорость света). Поэтому дальнейшее уменьшение времени переключения электронных схем не позволит существенно повысить производительность ЭВМ. В этих условиях требования .практики (сложные физико-технические расчеты, автоматизированное проектирование сложных объектов, многомерные экономико-математические модели и другие задачи) по дальнейшему повышению быстродействия ЭВМ могут быть удовлетворены только путем распространения принципа параллелизма на сами устройства обработки информации и создания многомашинных и многопроцессорных (мультипроцессорных) вычислительных систем. Такие системы позволяют производить * распараллеливание во времени выполнения программы или параллельное выполнение нескольких программ. '
19. Каринский С. С. Устройства обработки сигналов на ультразвуковых поверхностных волнах. М., Советское радио, 1975, 175 с.
37. Каринский С. G. Устройства обработки сигналов на ультразвуковых по-•верхностных волнах. М., 1975.
В настоящее время технология первичных изделий стала настолько совершенной, что позволяет объединять полупроводниковые приборы микроскопической величины в отдельные законченные функциональные устройства в микросхемотехническом исполнении (усилители, генераторы, преобразователи различного назначения, устройства обработки информации, сложные логические устройства). В сочетании с миниатюрными устройствами СВЧ на базе пленочной технологии современные аппараты, содержащие тысячи и десятки тысяч активных элементов, позволяют реализовать очень компактные и надежные системы. Дальнейший прогресс в этой области связан с совершенствованием технологии.
Дискретные сигналы поступают на вход устройства обработки информации с некоторыми интервалами времени. При поступлении сигналов энтропия значений координаты L уменьшается. В периоды пауз энтропия значений координаты L под влиянием внешних случайных возмущений увеличивается.
При реализации оптимальных схем обнаружения возникают трудности, обусловленные несовершенством конструкции устройства обработки. Поэтому реальная схема согласованного фильтра является квазиоптимальной, а потери в отношении сигнал/помеха определяются коэффициентом р [9].
Благодаря универсальности и широким функциональным возможностям ПЗС находят применение для построения цифровых, оптоэлектронных и аналоговых устройств. Характеристики таких устройств часто превосходят характеристики имеющихся аналогов. В частности, использование ПЗС в устройствах формирователей сигналов позволило исключить высоковольтные вакуумные системы, а применение их для выполнения функций памяти обеспечило промышленное получение полупроводниковых запоминающих устройств сверхбольшой информативной емкости, которая уже сейчас превышает 16 К бит на одну подложку. Несмотря на технологические трудности изготовления ПЗС, связанные с проколом оксида и закорачиванием затворов соседних элементов, на этих приборах уже разработаны и действуют телевизионные передающие камеры с полным телевизионным разрешением, запоминающие устройства емкостью до 2 М бит, устройства обработки аналоговых сигналов, фотоэлектрические преобразователи и др.
Схема устройства однофазного индукционного счетчика показана на 12.17.
Принцип действия трансформатора. Схема устройства однофазного двухобмоточного трансформатора и его электрическая схема показаны на 7.1, а, б. На схеме представлены только основные части: ферромагнитный сердечник (магнитопровод), две обмотки на сердечнике. Одну обмотку включают в сеть с переменным напряжением. Эту обмотку и относящиеся к ней величины — число витков N\, напряжение и\ и ток Л — называют первичными.
А. Ивдукцмшый счетчик. Схема устройства однофазного индукционного счетчика, включенного в цепь для измерения активной энергии приемника с сопротивлением нагрузки ZH, показана на 12.16.
Схема устройства однофазного индукционного счетчика показана на 12.17.
93. Схема устройства однофазного трансформатора
87. Схема устройства однофазного счетчика индукционной системы.
Приборы индукционной системы. В измерительных механизмах приборов этой системы вращающий момент создается с помощью двух переменных магнитных потоков, взаимодействующих с вихревыми токами в подвижной части прибо'ра, индуктированными этими же магнитными потоками. Индукционные приборы могут служить в' качестве амперметров, но в настоящее время изготавливаются только индукционные счетчики электрической энергии для цепей однофазного и трехфазного тока. На 9-12 дана схема устройства однофазного индукционного счетчика. Алюминиевый диск 3, укрепленный на вращающейся оси 10, находится между полюсами двух электромагнитов / и 7. Обмотка электромагнита 1 включена последовательно с нагрузкой ZH, а электромагнита 7 — параллельно нагрузке. Токи ix и г'2 создают переменные магнитные потоки Фх и Ф2, пронизывающие диск 3 и индуктирующие в нем вихревые токи. Можно показать, что в результате взаимодействия • вихревых токов с магнитными потоками Фг и Фр2 возникает вращающий момент:
Индукционная система. Принцип действия идукци-онных приборов поясним на упрощенной схеме устройства однофазного счетчика переменного тока ( 8.7, а, б, в).
Индукционная система. Принцип работы индукционных приборов поясним на упрощенной схеме устройства однофазного счетчика переменного тока ( 11.7).
В случае пофазного управления выключателями (при напряжениях ПО кВ и выше) могут применяться устройства однофазного АПВ.
Похожие определения: Указанных недостатков Устойчивость состояния Устойчивости двигателя Устойчивости простейшей Устранения динатронного Устранения возможности Устройствах импульсной
|