Секционным выключателем

Питание потребителей напряжением 380/220 В осуществляется от двухтрансформаторной комплектной трансформаторной подстанции (КТП) 6 (10)/0,4—0,23 кВ с секционированием сборных шин и АВР с секционными выключателями как на стороне 6(10) кВ, так и на стороне 0,4— 0,23 кВ. Для питания особо ответственных потребителей («особой группы») в период перерыва электроснабжения от энергосистемы на время, большее 1 мин, предусматривается дизель-электрическая станция, запускаемая автоматически при исчезновении напряжения на шинах 6(10) кВ подстанции. Мощность этой станции 250—500 кВт. К числу потребителей этой группы относятся входная, выходная электрозадвижки и задвижки для работы нефтепровода при отключившейся насосной станции, противопожарный пенный насос и его задвижка, освещение насосной, противопожарная автоматика, системы автоматики и телемеханики насосной станции. Пожарные и пенные насосы кроме электрического привода снабжаются и дизельным. Указанная мощность дизельной электростанции определяется без учета их нагрузок.

На секционных выключателях при наличии специальных защит шин, а также на шиносоединительных нормально включенных выключателях при наличии обходных защиты имеют другое основное назначение: обеспечение в аварийных ситуациях более полноценного (например, лучшего по чувствительности) удаленного дальнего резервирования путем разрезания (деления) шин на части ши-носоединительными и секционными выключателями. Часто это достигается совместно с местным дальним резервированием, например защитами от внешних КЗ на трансформаторах, автотрансформаторах, которые, как указывалось в гл. 12 и 13, с меньшей выдержкой времени действуют на секционные, шиносоединительные выключатели и толь-

до 1500 А. Наличие сдвоенных реакторов дает возможность иметь в РУ напряжением 6—10 кВ 2—4 секции сборных шин с секционными выключателями.

и той же причине не были поражены оба щита. С РЩУ производится управление дизель-генераторными установками и другими аварийными источниками, а также секционными выключателями в РУ 6 кВ собственных нужд.

но с секционными выключателями в обеих системах шин.

Шины напряжением ПО кВ имеют четыре секции, соединенные нормально разомкнутыми секционными выключателями, и обходные шины. Две секции получают питание от независимых частей заводской теплоэлектроцентрали (ТЭЦ) и две секции от подстанции энергосистемы. Питание УРП 110 кВ осуществляется одноцепными воздушными линиями 110 кВ, которые в пределах ограды завода по соображениям экономии территории переходят в двухцепные. По компоновке и конструктивной части выполнения УРП ПО кВ приводятся два варианта.

На секционных выключателях при наличии специальных защит шин, а также на шиносоединительных нормально включенных выключателях при наличии обходных защиты имеют другое основное назначение: обеспечение в аварийных ситуациях более полноценного (например, лучшего по чувствительности) удаленного дальнего резервирования путем разрезания (деления) шин на части ши-носоединительными и секционными выключателями. Часто это достигается совместно с местным дальним резервированием, например защитами от внешних КЗ на трансформаторах, автотрансформаторах, которые, как указывалось в гл. 12 и 13, с меньшей выдержкой времени действуют на секционные, шиносоединительные выключатели и толь-

На 2-46 приведена схема типовой подстанции на напряжение 110/6—10 кВ с двумя трансформаторами мощностью по 25—40 MB-А с расщепленными обмотками с применением отделителей (ОД) и ко-роткозамыкателей (КЗ). Каждая ветпь обмотки подключена к отдельной секции шин 6—10 кВ, которые попарно связаны секционными выключателями, т. е. секции I С и II С, питаемые от трансформатора /, связаны соответственно с секциями III С и IV С, питаемыми от трансформатора 2. Таким образом, секции, питаемые от разных трансформаторов, могут взаимно резервировать друг друга в случае аварии или ревизии трансформатора.

снабжения какой-либо группы потребителей. Время перерыва определяется действиями оперативного персонала по ликвидации аварии при магистральной схеме {до 1,5 ч) или периодом ремонтно-восстановительных работ при радиальной схеме (до нескольких суток). Информация ДП городской электросети о повреждении осуществляется при этом телефонными сообщениями от потребителей. В таком случае ТС с распределительного пункта РП на ДП электросети об аварии мало влияет на ускорение ее ликвидации, так как разница во времени поступления сообщений о повреждении по телефону или по каналам ТМ незначительна (минуты) и тем меньше, чем крупнее нарушение электроснабжения (т. е. чем больший круг потребителей оказывается в зоне аварии). Ускорить ликвидацию последствий повреждения может телеуправление секционными выключателями, но для этих целей всегда целесообразнее применять автоматику (например, УАВР или УАПВ), а не телемеханику. Таким образом, в неавтоматизированной электрической сети применение средств ТМ для ускорения ликвидации аварии малоэффективно. В то же время схемы и нагрузка городских электрических сетей, как правило, хорошо известны персоналу, поэтому нет необходимости и в дополнительном контроле за схемой и нагрузками в нормальном режиме (т. е. нет необходимости в ТС—ТИ на рассматриваемых неавтоматизированных подстанциях).

ности нагрузок в пределах 6—8 МВт/км" экономически обоснованно применение лишь крупных РП [52.2], питание которых осуществимо по радиальным схемам ( 52.9). Схема 52.9, а характеризуется тем, что секционные выключатели шин 10 (6)—20 кВ как на ИП, так и на РП включены, что обусловливает непрерывное равенство нагрузок обеих ПЛ и минимальные потери мощности и электроэнергии в питающей сети. Вместе с тем при повреждениях указанных выше секционных выключателей произойдет полное отключение РП, который при его нагрузке не менее 10 МВт относится к первой категории по требованиям надежности электроснабжения. Указанного недостатка не имеет схема 52.19, б, работающая с отключенными секционными выключателями ИП и РП и

трехагрегатных компрессорных станциях можно соединять между собой параллельно для облегчения пуска приводных двигателей компрессоров и уменьшения числа токопроводов (два вместо четырех). На компрессорных станциях с шестью машинами соединение вторичных обмоток трансформаторов недопустимо по условию устойчивости оборудования к действию токов короткого замыкания. Все оборудование распределительного устройства 10 кВ размещается в зданиях из металлических панелей. Четыре секции распределительного устройства 10 кВ, снабженные вводными выключателями, попарно соединены между собой секционными выключателями.

В развернутой схеме АВР с секционным выключателем, работающая на переменном оперативном токе ( 2.44), при исчезновении напряжения на резервируемой секции шин срабатывают реле напряжения PHI, РН2 или РИЗ, РН4.

Схема с выключателями высокого напряжения и релейной защитой на вводах 110 (220) кВ и секционным выключателем на шинах 110 (220) кВ является более маневренной (см. 11.8). Она позволяет переводить питание подстанции с одной линии на другую и переводить питание любого

Категория надежности потребителей определяет их схему электроснабжения. Потребители категории I должны иметь два независимых источника питания с устройством автоматического включения резерва (АВР) между ними и питаться по двум рабочим линиям. Практически это достигается секционированием шин на стороне 6(10) кВ, (в ЗРУ), так и на стороне 0,4 кВ [щитовое силовое устройство (ЩСУ) ] . Каждая система шин в этих случаях является независимым источником питания, причем секции шин 0,4 кВ запитываются через отдельные трансформаторы 6(10)70,4 кВ. При такой схеме все потребители могут работать либо раздельно, либо параллельно с автоматическим разделением секционным выключателем в случае аварии в сети одной из секций шин. Кроме того, двигатели привода ответственных механизмов одного назначения обычно дублируются и также делятся на две независимые группы. Такие двигатели снабжаются технологическим АВР.

Схема электрических соединений электростанций с одиночной секционированной системой сборных шин ( ЗА, б). Деление схемы на две секции (/ и 2} секционным выключателем Всеки делает ее более гибкой и обеспечивает бесперебойность питания потребителей. В этом случае при ревизии, осмотре, очистке изоляторов или ремонте шин одной из секций теряется мощность лишь части станции. При аварии на одной из секций или при отказе в работе

При большом числе секций и отходящих линий, что имеет место при значительной мощности станции и большой выдаче энергии с шин генераторного напряжения, такая схема становится громоздкой. По этим причинам схемы с обходной системой шин применяются редко в устройствах генераторного напряжения и обычно используются в установках повышенного напряжения на 110 кВ и выше. Схема электрических соединений электростанций с двойной системой сборных шин ( 3.6). Эту схему используют при отсутствии резерва в сети и большом количестве линий генераторного напряжения. Система шин 1 ( 3.6, а) считается рабочей, 2 — резервной. Каждое присоединение подключено к шинам через развилку из разъединителей Р1 и Р2 и один выключатель; шины связаны между собой шиносоединительным выключателем ШСВ. Рабочая система шин иногда секционируется секционным выключателем Д.-окц ( 3.6, б) и при необходимости — секционным реактором. На каждой секции устанавливается свой шиносоединительный выключатель, что увеличивает гибкость схемы. При ревизии или чистке одной из секций рабочей системы шин все присоединения этой

10.5. Схема АВР с секционным выключателем и пружинным приводом в сети выше 1000 В:

АВР с секционным выключателем и пружинным приводом приведена на 10.5. В схеме имеется двигатель привода М, отключаемый конечным выключателем ВК. Для питания реле блокировки РБ предусмотрен выпрямитель. Выключатели В1 и В2 включены, В отключен. Готовность устройства АВР сигнализируется лампой ЛГ. Избиратель управления ИУ установлен в положение АВР. Реле минимального напряжения РН1 — РН4 и реле блокировки РБ включены. Контакт пружинного привода Впр замкнут.

Чем больше секций на электростанции, тем труднее поддерживать одинаковый уровень напряжения, поэтому при трех и более секциях сборные шины соединяют в кольцо. В схеме на 5.10 первая секция может быть соединена с третьей секционным выключателем и реактором, что создает кольцо сборных шин. Нормально все секционные выключатели включены, и генераторы работают параллельно. При КЗ на одной секции отключаются генератор данной секции и два секционных выключателя, однако параллельная работа других генераторов не нарушается.

а — схема с совмещенным обходным и секционным выключателем и отделителями в цепях трансформаторов; 6 ~ режим замены линейного выключателя обходным; в — схема с обходным и секционным выключателями

Категория надежности потребителей определяет их схему электроснабжения. Потребители категории I должны иметь два независимых источника питания с устройством автоматического включения резерва (АВР) между ними и питаться по двум рабочим линиям. Практически это достигается секционированием шин на стороне 6(10) кВ [в закрытое распределительное устройство (ЗРУ)], так и на стороне 0,4 кВ [в щитовое силовое устройство (ЩСУ)]. Каждая система шин в этих случаях является независимым источником питания, причем секции шин 0,4 кВ запитываются через отдельные трансформаторы (6)10/0,4 кВ. При такой схеме потребители могут работать либо раздельно, либо параллельно с автоматическим разделением секционным выключателем в случае аварии в сети одной из секций шин. Кроме того, двигатели привода ответственных механизмов одного назначения обычно дублируются и также делятся на две независимые группы. Такие двигатели снабжаются технологическим АВР.

На 1.7,6 приведена структурная схема электрической станции двухсекционной системы. Деление схемы на две секции секционным выключателем Вс делает ее более гибкой по сравнению с предыдущей схемой и обеспечивает бесперебойность питания потребителей. В этом случае при ревизии, осмотре, очистке изоляторов или ремонте шин одной из секций теряется мощность лишь части станции. При аварии на одной из секций или при отказе в работе релейной защиты отходящих линий вначале отключается секционный выключатель, релейная защита которого имеет меньшую выдержку времени, чем защита генераторов; затем—генераторы поврежденной секции. Это приводит к локализации аварии одной секции и к сохранению нормальной работы другой.



Похожие определения:
Схематично изображены
Сигнальных созвездий
Сигнализация положения
Симметричный относительно
Симметричные трехфазные
Симметричным напряжением
Симметричной двухфазной

Яндекс.Метрика