Окружности сердечникаТак как все камеры соединены с общим коллектором, то в случае одинаковых дросселей у всех камер и концентричного расположения вала (эксцентриситет е = 0) в подшипнике через все камеры потечет одинаковый расход жидкости, потери в дросселях будут одинаковыми и, следовательно, давления в камерах также будут одинаковы. Если сместить вал по направлению в какой-нибудь камере (т. е. е=^0), то сопротивление гидравлического тракта через эту камеру (от коллектора до слива) увеличится. Следовательно, через эту камеру пойдет меньший расход, падение давления в дросселе уменьшится, а давление в камере возрастет. При этом в диаметрально противоположной камере давление упадет. Таким образом, при смещении вала от концентричного положения создается разность давления в камерах, образующая восстанавливающую силу, действующую на вал в направлении, противоположном направлению его смещения. При определении эксцентриситета, величину которого задают при расчете исходя из условий работы ГСП, можно добиться того, что вал будет удерживаться в подшипнике во взвешенном состоянии. Подшипник, выполненный по этой схеме, называется камерным ГСП с постоянными дросселями на входе и отводом жидкости через торцы подшипника. Он отличается сравнительной простотой конструкции. На 7.28 изображен нижний радиальный подшипник насоса РБМК-ЮОО. Корпус подшипника 1 выполнен из стали 20X13. На его внутренней поверхности равномерно по всей окружности расположены 12 несущих камер 3. Вода в несущую камеру поступает через дроссель 2 диаметром 7 мм. На шейку вала насоса напрессовывается втулка, изготовленная также из стали 20X13. Чтобы зафиксировать положение подшипника в горловине насоса при резких изменениях температуры, корпус подшипника центрируется четырьмя шпонками 5. Слив воды из ГСП на всасывание рабочего колеса осуществляется по отверстиям 4. Позднее ГСП был усовершенствован ( 7.29). Со стороны фланца корпуса подшипника в спе-
и IM2101 (на лапах с фланцевым подшипниковым щитом со стороны вала). Станина генератора 1 - чугунная, литая. В верхней ее части имеется проем прямоугольной формы, над которым устанавливают блок регулирования напряжения 13. На внутренней поверхности станины равномерно по окружности расположены продольные ребра, на которые сажают обмотанный магнитопровод статора. Каналы, образованные между ребрами и наружной поверхностью статорного магнитопровода, служат для прохождения охлаждающего воздуха. Вентиляция генератора - аксиальная, вытяжная. Воздух забирается центробежным вентилятором 11 через отверстия в щите, расположенном со стороны контактных колец. Подшипниковые щиты 4 — чугунные, литые. В нижних частях щитов расположены окна для прохождения воздуха. Окна защищены сетками, штампованными из листовой стали. Для увеличения размеров окон нижняя часть щитов расширена.
Разрез простейшего генератора трехфазного тока показан на 57. В пазах статора симметрично по окружности расположены три одинаковые катушки, нача^ ло и конец каждой из которых сдвинуты в пространстве на угол 120°. Условились начала катушек обозначать буквами А, В, С, а концы X, Y, Z. Внутри статора расположен ротор, представляющий собой электромагнит. При вращении ротора вращается и его магнитное поле, магнитные силовые линии которого пересекают обмотки статора, вследствие чего в них индуктируются ЭДС одной и той же частоты, имеющие одинаковые амплитуды, но сдвинутые по фазе на 120°. Приняв за начало отсчета
Знак плюс берется при А<1, т. е. для полупространства с отрицательно заряженной осью, а знак минус — при k>\, т.е. для полупространства с положительно заряженной осью. В первом случае окружности расположены справа от оси оу, во втором случае — слева.
Знак плюс берется при k < 1, г. е. для полупространства с отрицательно заряженной осью, а знак минус — при k > 1, т. е. для полупространства с положительно заряженной осью. В первом случае окружности расположены справа от о:и Оу, во втором случае — слева.
щек представляют собой подвешенные кольца, внутри которых по окружности расположены 6—8 бронзовых щек, прижимаемых к кожуху электрода (зажим вручную болтами—в старых конструкциях и специальным гидравлическим устройством — в , новых мощных печах). При перепуске зажим ослабляется и электрод проскальзывает внутри электрододержателя. Электро-додержатели располагаются над колошником на уровне верхнего края ванны.
ют блок регулирования напряжения 13. На внутренней поверхности станины равномерно по окружности расположены продольные ребра, на которые сажают обмотанный магни-топровод статора. Каналы, образованные между ребрами и наружной поверхностью статорного магнито-провода, служат для прохождения охлаждающего воздуха. Вентиляция генератора — аксиальная, вытяжная. Воздух забирается центробежным вентилятором // через отверстия в щите, расположенном со стороны контактных колец. Подшипниковые щиты 4 — чугунные, литые. В нижних частях щитов расположены окна для прохождения воздуха. Окна защищены сетками, штампованными из листовой стали. Для увеличения размеров окон нижняя часть щитов расширена.
в направлении, противоположном направлению его смещения. При определении эксцентриситета е, величину которого задают при расчете исходя из условий работы ГСП, можно добиться того, что вал будет удерживаться в подшипнике во взвешенном состоянии. Подшипник, выполненный по этой схеме, называется камерным, ГСП с постоянными дросселями на входе и отводом жидкости через торцы подшипника. Он отличается сравнительной простотой конструкции и применяется, в частности, в качестве нижнего радиального подшипника в насосах реактора РБМК ( 3.18). Корпус подшипника / выполнен из стали 20X13. На его внутренней поверхности равномерно по всей окружности расположены двенадцать несущих камер 3. Вода в несущую камеру поступает через дроссель 2 с диаметром отверстия 7 мм. Расход через, ГСП в номинальном режиме составляет 50—55 м3/ч. На шейку вала насоса напрессовывается втулка, изготовленная также из стали 20X13. Чтобы зафиксировать положение подшипника в горловине насоса при резких изменениях температуры, корпус подшипника щентрируется четырьмя шпонками 5. Слив воды из ГСП на всасывание рабочего колеса осуществляется по отверстиям 4. Схема питания ГСП рассмотрена в гл. 4. Позднее ГСП насоса РБМК был
На 10.6, а дана конструкция синхронного генератора серии ЕСС, а на 10.6, б — его внешний вид. Генераторы изготовляют в горизонтальном защищенном исполнении. По способу крепления и конструкции подшипниковых узлов генераторы имеют две формы исполнения: IM1001 (на лапах с двумя одинаковыми подшипниковыми щитами) и IM2101 (на лапах с фланцевым подшипниковым щитом со стороны вала). Станина генератора / — чугунная, литая. В верхней ее части имеется проем прямоугольной формы, над которым устанавливают блок регулирования напряжения 13. На внутренней поверхности станины равномерно по окружности расположены продольные ребра, на которые сажают обмотанный
зонтальной карусели по ее окружности расположены на
Соединение отдельных проводников одной фазы обмотки между собой и взаимное расположение обмоток всех трех фаз статора можно проследить с помощью развернутой схемы обмотки статора двухполюсного асинхронного двигателя, изображенной на 10.5, а. Обозначения на рисунке: пО — длина внутренней окружности сердечника статора; / — длина сердечника статора, цифры от 1 до 24 — пазы.
На 10.10,и и в изображены картины магнитных полей и векторные диаграммы для моментов времени, соответствующих точкам 2 и 3 (см. 10.9) На !0.(О,s — с приведены графики распределения магнитных индукций вдоль воздушного зазора двигателя (кО — длина внутренней окружности сердечника статора), образованных током каждой фазы, и результирующего поля соответственно для моментов времени, отмеченных точками 5, 6, 7 (см. 10.9). Пунктирными линиями обозначены магнитные индукции, соответствующие положительным направлениям тока при их амплитудных значениях, сплошными линиями — магнитные индукции, соответствующие действительным направлениям тока. Для момента времени, соответствующего точке 5 (см. 10.9), ток фазы А положительный и равен амплитудному значению, токи фаз В и С отрицательные и равны половине амплитудного значения. Поэтому амплитуда магнитной индукции фазы А составит Вт и график поля совпадает с положительным направлением магнитных индукций, амплитуды магнитной индукции фаз В и С составят BJ2, а их графики будут повернуты на 180"' по отношению к положительным направлениям. Результирующее
В машинах с /1 = 315-4-450 мм применяют эксцентричный воздушный зазор, при котором центры радиусов полюсной дуги и внутренней окружности сердечника статора не совпадают ( 11-8); в этом случае зазор имеет наимеьшее значение 6' под
окружности сердечника статора, что представляет собой весьма
где D—диаметр окружности сердечника якоря;
имеющую число параллельных ветвей 2а=2т. В такой обмотке после полного обхода по окружности сердечника якоря секции приходят не в соседний элементарный паз, а в отстоящий от него на т элементарных пазов. Полный шаг у и шаг по коллектору ук при этом определяются по формуле
На основании равенства (VII.15) можно сделать вывод, что угловая скорость механического перемещения волны -п-, выраженная в электрических радианах в секунду, численно равна угловой частоте о> изменения тока в обмотке. В результате этого за время одного периода изменения тока волна н. с. перемещается на расстояние, равное двойному полюсному делению 2т. Так как в многополюсной машине 2т составляет 1/р часть полной окружности сердечника якоря, то механическая угловая скорость вращения сомех в р раз меньше, чем угловая частота о, т. е.
В машинах с /1 = 315-^450 мм применяют эксцентричный воздушный зазор, при котором центрьк радиусов полюсной дуги и внутренней окружности сердечника статора не совпадают ( 11-8); в этом случае зазор имеет наимеьшее значение б' под
Для определения расчетного коэффициента полюсной дуги а' (представляющего собой отношение расчетной полюсной дуги &'« к полюсному делению т) значение Ь'а может быть найдено по кривой распределения магнитной индукции в воздушном зазоре вдоль окружности сердечника статора, что представляет собой весьма трудоемкую задачу. При гребенчатой конструкции и принятых •соотношениях между /ш и /у полюсных наконечников можно принять
В двигательном режиме за время одного периода Т вращающееся поле перемещается вдоль воздушного зазора (зазор между внутренней поверхностью статора и внешней поверхностью ротора) на расстояние, равное части дуги внутренней окружности сердечника статора, приходящейся на пару полюсов, т. е. на расстояние двух полюсных делений. Следовательно, полюсное деление
Режим работы генератора, при котором ток в обмотке якоря (статора) равен нулю, называется холостым ходом. При холостом ходе магнитный поток Ф0 создается только м. д. с. обмотки возбуждения. Этот поток, проходя через воздушный зазор, сцепляется с обмоткой якоря и при вращении индуктора наводит в каждой фазе обмотки якоря э. д. с. Форма кривой э. д. с., индуцированной в обмотке якоря при холостом ходе, должна быть возможно ближе к синусоиде. Напряжение (э. д. с.) считается практически синусоидальным, если разность между ординатой действительной кривой напряжения и ординатой идеальной синусоиды в одной и той же точке не превышает 5 % для генераторов мощностью выше 1000 кВ-А и 10% для генераторов мощностью от 10 до 1000 кВ-А. Для получения близкой к синусоидальной формы кривой напряжения (э. д. с.) необходимо, чтобы распределение магнитного потока по окружности статора генератора было близким к синусоидальному. Для этого в неявнополюсных машинах обмотку возбуждения распределяют таким образом по окружности сердечника ротора, чтобы снизились амплитуды м. д. с. высших гармоник. В явнополюсных машинах этого добиваются, увеличивая зазор по краям полюсных наконечников. Обмотку якоря трехфазных генераторов обычно соединяют звездой, так как при этом отсутствуют третьи гармоники тока и третьи гармоники линейных напряжений, а также уменьшаются потери мощности в машине.
Похожие определения: Операционных устройств Операционном устройстве Оперативных запоминающих Оперативного обслуживания Обеспечение максимальной Операторные уравнения Операторное изображение
|