Называется напряжение

Точка пересечения А внешней характеристики активного двухполюсника и ВАХ нелинейного двухполюсника /(С/) определяет рабочий режим цепи ( 6.3). Характеристика (6.1) называется нагрузочной характеристикой активного двухполюсника, а графоаналитический метод расчета нелинейной цепи с ее применением — методом нагрузочной характеристики.

Рассмотрим динамический режим транзистора, работающего по схеме с ОЭ ( 6.13). При работе транзистора совместно с нагрузкой RH, включенной в цепь коллектора, напряжение источника питания ?к распределяется между нагрузкой и переходом коллектор — эмиттер (С/кэ) : ?к = f/кэ + АсЯн. поэтому ток коллектора изменяется по линейному закону в соответствии с выражением /к = (?к — 1/кэУЯн- Графическая зависимость /к = f (t/кэ) представляет собой прямую линию, которая называется нагрузочной прямой. Для исследования свойств транзистора в динамических режимах нанесем нагрузочную прямую на семейство выходных статических характеристик ( 6.13, б). Точка пересечения нагрузочной прямой с осью токов совпадает с точкой, для которой удовлетворяется условие 1кКн — ?к-

Точка пересечения А внешней характеристики активного двухполюсника и ВАХ нелинейного двухполюсника I(U) определяет рабочий режим цепи ( 6.3). Характеристика (6.1) называется нагрузочной характеристикой активного двухполюсника, а графоаналитический метод расчета нелинейной цепи с ее применением — методом нагрузочной характеристики.

Точка пересечения А внешней характеристики активного двухполюсника и ВАХ нелинейного двухполюсника I(U) определяет рабочий режим цепи ( 6.3). Характеристика (6.1) называется нагрузочной характеристикой активного двухполюсника, а графоаналитический метод расчета нелинейной цепи с ее применением — методом нагрузочной характеристики.

Прямая линия, описываемая последним уравнением, называется нагрузочной прямой, которая строится на семействе выходных характеристик транзистора по двум точкам ( 45, б).

В многокаскадных усилителях выходные цепи через разделительный конденсатор С нагружены входным сопротивлением следующего каскада, которое в большей части полосы рабочих частот можно считать активным RH. По переменному току нагрузочное сопротивление усилителя равно не RK, a RK /?„, так как сопротивление Rt, включено параллельно резистору RK (см. 18.8,6). Нагрузочная линия каскада, когда по цепи протекает переменный ток, отличается от нагрузочной линии постоянного тока и называется нагрузочной линией переменного тока. Нагрузочная линия переменно! о тока пересекается с нагрузочной линией постоянного тока в так называемой начальной рабочей точке, так как в момент прохождения переменного сигнала через нуль рабочая точка находится в начальном положении. Наклон нагрузочной линии переменного тока определяется углом а = arcctg (RK jj R,,). Ha 18.9 она проходит через начальную рабочую точку А круче соответствующей нагрузочной прямой постоянного тока при RK = RKl (пунктир на рисунке).

Эта зависимость напряжения t/K_3 от тока изображена на 22-7,6 в виде прямой линии CD, которая называется нагрузочной характеристикой. С помощью этой характеристики и семейства характеристик может быть определена рабочая точка транзистора, т. е. его коллекторный ток и напряжение на нем при заданном токе базы. Например, при токе базы /61 рабочая точка определится как Точка А пересечения соответствующей характеристики транзистора с нагрузочной характеристикой. При изменении управляющего тока базы /е, например, от значения 1^\ до /бз ток коллектора изменяется в соответствии с нагрузочной характеристикой от значения, соответствующего точке А, до значения в точке В. Такая работа транзистора на нагрузочной характеристике называется работой «в активной зоне» и принципиально ничем не отличается от работы электронной лампы.

Погрешность счетчика зависит от режима его работы, поэтому государственным стандартом нормируется разная погрешность при различных нагрузках. Зависимость погрешности от нагрузки называется нагрузочной кривой счетчика и иллюстрируется 3.45 (кривые / и 2 соответствуют классам 2,5 и 2,0). Характер кривых при нагрузках 5—20% объясняется влиянием неравенства компенсационного момента и момента трения. При нагрузке более 20% сказывается непропорциональность между токами и магнитными потоками в последовательной и

Изменение у« в зависимости от отношения ///„ называется нагрузочной кривой счетчика. На 7-3 представлены нагрузочные кривые счетчиков разных типов. Рассмотрев эти кривые, мож-

Эта зависимость напряжения [/к_э от тока изображена на 22-7,6 в виде прямой линии CD, которая называется нагрузочной характеристикой. С помощью этой характеристики и семейства характеристик может быть определена рабочая точка транзистора, т. е. его коллекторный ток и напряжение на нем при заданном токе базы. Например, при токе базы /б1 рабочая точка определится как точка А пересечения соответствующей характеристики

Уравнение (4.11) представляет собой прямую, проходящую через точку покоя; эта прямая является динамической выходной характеристикой переменного тока для активной нагрузки и называется нагрузочной прямой или нагрузочной линией переменного тока для активной нагрузки.

Пилообразным называется напряжение, которое сравнительно медленно нарастает по прямолинейному закону и затем быстро умень-Тн шается до первоначального значения.

Занос высоких потенциалов — перенесение высоких электрических потенциалов в здания по внешним металлическим сооружениям и коммуникациям, а также по проводам воздушных линий (электро-, радио-, телефонных) при прямых ударах молнии в них. Образующиеся искры от вторичного воздействия молнии могут быть причиной взрыва в помещениях с наличием взрывоопасных смесей. Для людей и животных, находящихся на расстоянии 5—10 м от места удара молнии в землю, воз-, никает опасность шагового напряжения. Шаговым напряжением называется напряжение, приходящееся на длину шага человека или животного, образуемое на поверхности грунта током молнии. Вероятность поражения молнией зданий и сооружений зависит от интенсивности грозовой деятельности в данной местности, рельефа ме-

Из (3.35) следует, что критическим' напряжением называется напряжение, при котором опрокидывающий момент соответствует ;рабочей нагрузке:

Начальным напряжением называется напряжение химического источника тока в начале разряда, измеряемое через установленный промежуток времени. Обычно его измеряют через 0,05—5 мин после начала разряда. При разряде, когда источник тока отдает всю свою электрическую энергию за несколько секунд или минут, начальное напряжение измеряется непосредственно после включения. При разряде, который длится несколько часов, дней или месяцев, начальным напряжением считается напряжение, измеренное не позднее чем через 5 мин после начала разряда. В условиях низких температур, особенно при больших плотностях тока, начальное напряжение ниже, чем при температуре 20—30° С, которая принята нормальной температурой эксплуатации источников тока.

нальным входным напряжением называется напряжение, которое нужно подвести к входу усилителя, чтобы получить на выходе заданную мощность. Входное напряжение зависит от типа источника усиливаемых колебаний. Чем меньше величина входного напряжения, обеспечивающего требуемую выходную мощность, тем выше чувствительность усилителя. Подача на вход усилителя напряжения, превышающего номинальное, приводит к значительным искажениям сигнала и называется перегрузкой со стороны входа. Если усилитель предназначен для работы от нескольких источников, то его вход рассчитывается обычно на наименьшее найряже-ние, которое дает один из источников, а другие источники сигнала включаются через делители напряжения.

Номинальным первичным напряжением называется напряжение, указанное на щитке трансформатора; если первичная обмотка имеет ответвления, то ее номинальное напряжение отмечается особо.

Номинальным вторичным напряжением называется напряжение на зажимах вторичной обмотки при холостом ходе трансформатора и при номинальном напряжении на зажимах первичной обмотки; если вторичная обмотка имеет ответвления, то ее номинальное напряжение отмечается особо.

Расчетная мощность имеет условный характер и не совпадает с той действительной мощностью, которую трансформатор отдает при работе. Напомним (§ 12-4), что номинальным вторичным напряжением трансформатора называется напряжение при холостом ходе, т. е. U2t, = U20. Следовательно, номинальная мощность трансформатора на стороне вторичной обмотки составляет ?/20/а„. Действительная мощность, отдаваемая трансформатором при токе /2„, составляет Р2 = ?/2/2„, где U2 —действительное вторичное напряжение при работе трансформатора. Следовательно, расчетная мощность трансформатора отличается от действительной отдаваемой им мощности в той же мере, в какой напряжение U20 отличается от напряжения ?/2.

3. Номинальным вторичным напряжением выпрямительного трансформатора U2 называется напряжение его вторичной обмотки между ее нейтральным (нулевым) и фазным выводами при холостом ходе трансформатора.

Номинальным напряжением обмотки трансформатора, не имеющей ответвлений, называется напряжение между зажимами обмотки при холостом ходе трансформатора. Таким образом, напряжение на вторичной обмотке при номинальной нагрузке немного отличается от номинального. При обмотке с переключаемыми ответвлениями номинальное напряжение относится к основному ответвлению.

Переходным восстанавливающимся напряжением (ПВН) называется напряжение, появляющееся на полюсе выключателя после погасания в нем дуги. Различают понятия: действительное ПВН и ПВН системы. Действительное ПВН — это напряжение, измеренное на полюсе выключателя. Оно зависит от схемы и параметров системы, а также от конструкции и свойств выключателя, как-то: встроенных резисторов, напряжения на дуге, проводимости промежутка между контактами после погасания дуги и др. Напряжения, измеренные на полюсах выключателей разных конструкций, при прочих равных условиях могут отличаться друг от друга. ПВН системы является характеристикой системы как таковой; влияние конструкции и свойств выключателя на процесс отключения исключено. Предполагается, что цепь отключается «идеальным» выключателем, т. е. выключателем, у которого сопротивление дуги равно нулю, а сопротивление промежутка между контактами мгновенно достигает бесконечности после погасания дуги. Такой подход упрощает расчет ПВН и позволяет сопоставлять расчетную характеристику ПВН системы с нормированной характеристикой выключателя.



Похожие определения:
Направления распространения
Направлением распространения
Направление намагниченности
Направление противоположное
Надежности крепления
Направлении перпендикулярном
Направлении возникает

Яндекс.Метрика