Напряжения стабилизатор

ристики диода, что обеспечивает меньший температурный коэффициент напряжения стабилизации стабистора. Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации (~0,7 В).

На 6.10 приведены схема и потенциальная диаграмма УПТ, у которого во входной цепи и в цепи связи включены стабилитроны, на которых выделяется напряжение компенсации. Стабилитроны выбраны таким образом, что их напряжения стабилизации t/CT компенсируют постоянные напряжения в цепи базы и коллектора транзистора Тг.

Включение стабилитронов Z)t и D2 в цепь отрицательной обратной связи (см. 3.34) делает последнюю нелинейной, что позволяет ограничить амплитуду на требуемом уровне. При малых значениях напряжения 1/вых напряжение на диодах С/д меньше напряжения стабилизации С/ст ( 3.35, б), сопротивление R3 не зашунтировано диодами. Сопротивления jRt—R3 выбираются так, чтобы коэффициент усиления в этом случае ЛГ=1+(Л2 + ^з)/^1 был больше 3, вследствие чего амплитуды выходного напряжения и пропорционального ему напряжения на диодах ?7Д возрастают. При достижении напряжением С/д амплитудного значения, равного напряжению стабилизации С/ст, и соответствующего ему амплитудного значения С/вых тот или иной диод открывается и пара стабилитронов шунтирует сопротивление R3. Вследствие этого 100

— дифференциальное сопротивление гст — отношение приращения напряжения на стабилитроне к приращению тока в режиме стабилизации гст = Д?/СТ/Д/СТ; величина гст характеризует степень стабильности напряжения стабилизации при изменении тока пробоя: чем меньше ее значение, тем лучше осуществляется стабилизация;

— температурный коэффициент напряжения стабилизации (ТКН) — отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды:.ТКН = А!/„/?/„ ДГ[%/° С];

Величина напряжения стабилизации ?/ст определяется шириной р — n-перехода. Низковольтные стабилитроны (при ?/ст < <; 6 В) изготовляются с узким р — n-переходом из сильнолегированного кремния. Для этих переходов характерен туннельный пробой. При туннельном пробое величина напряжения, при котором происходит туннельный переход электрона из валентной зоны в зону проводимости, уменьшается с уменьшением ширины запрещенной зоны. С ростом температуры ширина запрещенной зоны уменьшается, поэтому уменьшается напряжение туннельного пробоя.

При увеличении напряжения стабилизации свыше 7...10 В увеличивается толщина р — л-перехода и возрастает роль лавинного пробоя. В этом случае с ростом температуры уменьшается длина пробега свободных носителей заряда за счет увеличения числа соударений с решеткой кристалла полупроводника, поэтому возрастает величина напряжения пробоя.

Величина ТКН и динамическое сопротивление гст зависят от напряжения стабилизации ( 5.21). Из этого графика видно, что ТКНГ может принимать как отрицательные, так и положительные значения. При повышении температуры в области лавинного пробоя напряжение t/CT увеличивается, а в области туннельного про-

боя уменьшается. Следовательно, положительные значения ТКН соответствуют лавинному, а отрицательные — туннельному характеру пробоя. Величина ТКН возрастает с ростом напряжения стабилизации, а динамическое сопротивление гст имеет минимум в области ?/ст = 7 В. В этой области развиваются одновременно лавинный и Туннельный пробои. Из анализа графика 5.21 можно сделать вывод, что величина ТКН при всех напряжениях стабилизации является малой величиной и не превышает 0,1%/°С. Один из способов уменьшения температурного коэффициента напряжения стабилизации, который используют для создания тер-мокомпенсированных стабилитронов, заключается в последовательном соединении стабилитрона и р — n-перехода, включенного в прямом направлении. С повышением температуры при постоянном токе падение напряжения на р — «-переходе, включенном в прямом направлении, уменьшается. Таким образом, у термокомпенси-рованных стабилитронов удается получить ничтожно малый ТКН.

5.21. Зависимость ТКН и динамического сопротивления от напряжения стабилизации.

Решение. Для стабилитронов типа Д814А при температуре окружающей среды +25°С и токе стабилизации /от, равном 5 мА, разброс напряжения стабилизации UCT составляет от 7,0 до 8,5 В. Для заданной схемы стабилизатора его выходное напряжение совпадает с напряжением стабилизации:

Отметим, что деление полупроводниковых устройств по их функциональному назначению в известной степени условно. Реальные полупроводниковые устройства часто содержат элементы нескольких групп, а также генераторы синусоидальных колебаний, стабилизаторы напряжения и т. п.

В общем случае структурная схема выпрямительного устройства ( 10.33) содержит трансформатор Т, выпрямитель В, сглаживающий фильтр Ф и стабилизатор выпрямленного напряжения Ст. Трансформатор служит для изменения синусоидального напряжения сети С до необходимого уровня, которое затем выпрямляется. Сглаживающий фильтр уменьшает пульсации выпрямленного напряжения. Стабилизатор поддерживает неизменным напряжение на приемнике П при изменении напряжения сети. Отдельные узлы выпрямительного устройства могут отсутствовать, что зависит от условий работы.

Параллельный стабилизатор, включающий насыщенный трансформатор и емкость, основан на введении в цепь нагрузки генератора реактивного тока соответствующего знака. При номинальном напряжении в цепи стабилизатора наступает резонанс и он не влияет на напряжение генератора. При снижении напряжения стабилизатор нагружает генератор емкостным током, реакция якоря которого намагничивает генератор и увеличивает напряжение. При повышении напряжения ток индуктивный, размагничивающий, увеличивает размагничивающее действие реакции якоря и напряжение стабилизируется вновь. Точность обоих методов ±2%.

На этой основе работают стабилизаторы напряжения, магнитные усилители, бесконтактные реле, магнитные логические и запоминающие элементы.

Ферромагнитные стабилизаторы напряжения. Стабилизатор напряжения поддерживает постоянной величину выходного напряжения i/a при изменении в определенных пределах напряжения И\ на его входе. Ферромагнитные стабилизаторы действуют на переменном токе.

В простейшем ферромагнитном стабилизаторе напряжения имеются два последовательно соединенных дросселя Др\ и Др% ( 10.25, а). К зажимам дросселя Др2 подключается нагрузка, чаще всего активная /?„. Стабилизирующее действие показано на 10.25, б, где изображены вольт-амперные характеристики:

служит для преобразования амплитуды входного напряжения (напряжения первичного источника) до необходимой величины, определяемой заданным выходным (постоянным) напряжением ВИЭП. Кроме того, трансформатор обеспечивает электрическую изоляцию (развязку) цепи нагрузки ВИЭП от первичного источника, что в ряде случаев является необходимым условием для нормальной работы системы. Выпрямитель преобразует переменное напряжение с выхода трансформатора в однополярное (пульсирующее) напряжение, поступающее на сглаживающий фильтр. Сглаживающий фильтр необходим для устранения (уменьшения) пульсаций выпрямленного напряжения. Стабилизатор служит для обеспечения постоянства напряжения на нагрузке при ее изменении и воздействии других факторов нестабильности. Отметим, что стабилизатор (регулирующий элемент) может быть выполнен и на входе ВИЭП, где он будет осуществлять стабилизацию напряжения, реагируя на изменение его амплитуды. Помимо перечисленных здесь узлов ВИЭП может содержать различные каскады регулирования, управления, защиты от перегрузок и т. д.

Отметим, что деление полупроводниковых устройств по их функциональному назначению в известной степени условно. Реальные полупроводниковые устройства часто содержат элементы нескольких групп, а также генераторы синусоидальных колебаний, стабилизаторы напряжения и т. п.

В общем случае структурная схема выпрямительного устройства ( 10.33) содержит трансформатор Т, выпрямитель В, сглаживающий фильтр Ф и стабилизатор выпрямленного напряжения Ст. Трансформатор служит для изменения синусоидального напряжения сети С до необходимого уровня, которое затем выпрямляется. Сглаживающий фильтр уменьшает пульсации выпрямленного напряжения. Стабилизатор поддерживает неизменным напряжение на приемнике /7 при изменении напряжения сети. Отдельные узлы выпрямительного устройства могут отсутствовать, что зависит от условий работы.

Отметим, что деление полупроводниковых устройств по их функциональному назначению в известной степени условно. Реальные полупроводниковые устройства часто содержат элементы нескольких групп, а также генераторы синусоидальных колебаний, стабилизаторы напряжения и т. п.

В общем случае структурная схема выпрямительного устройства ( 10.33) содержит трансформатор Т, выпрямитель В, сглаживающий фильтр Ф и стабилизатор выпрямленного напряжения Ст. Трансформатор служит для изменения синусоидального напряжения сети С до необходимого уровня, которое затем выпрямляется. Сглаживающий фильтр уменьшает пульсации выпрямленного напряжения. Стабилизатор поддерживает неизменным напряжение на приемнике Я при изменении напряжения сети. Отдельные узлы выпрямительного устройства могут отсутствовать, что зависит от условий работы.



Похожие определения:
Напряжения конденсаторы
Начальные напряжения
Напряжения находятся
Напряжения небольшой
Напряжения неповрежденных
Напряжения обратного
Напряжения ограничения

Яндекс.Метрика