Концентрации растворов

Электроэнергетическое хозяйство всех стран мира строится по принципу концентрации производства электрической энергии на крупных электрических станциях, которые с помощью линий электропередачи соединяются в энергетические системы. В процессе развития энергетические системы охватывают все большее чиело электрических станций, а сами эти станции строятся на все возрастающие мощности. Соединение электростанций в одну систему приносит большие выгоды, перекрывающие затраты на сооружение специальных линий электропередачи, соединяющих между собой эти станции.

6. Выполнение энергетикой роли двигателя общественного производства ставит весьма жесткие требования к ее собственной производственной базе. Эти требования выступают в виде принципа систематического роста концентрации производства энергетических ресурсов и централизации их распределения. При этом концентрация производства не сводится к укрупнению единичной мощности энергетических агрегатов и объектов (предприятий), а проявляется также в создании крупнейших топливных баз и энергетических комплексов (ЭК). Аналогично централизация распределения энергоресурсов означает не просто присоединение потребителей энергии к крупным (центральным) источникам, но и объединение самих источников во все более мощные энергетические системы, а в пределе — в единую общеэнергетическую систему страны и группы стран. Таким образом, главным принципом централизованного управления энергетикой СССР является принцип системности ее развития.

Второй путь развития энергосберегающих технологий состоит в укрупнении единичных мощностей технологических процессов и реализации других способов концентрации производства. Этот путь экономии конечной энергии может быть реализован практически во всех отраслях. Его эффективность характеризуют следующие примеры: замена мелких доменных печей наиболее современными (объемом 5000 м3) позволила бы сократить расход конечной энергии на 20—25%; использование в каталитическом риформинге (одном из прогрессивных процессов углубления переработки нефти) установок

В целом для промышленно развитых стран характерна также такая тенденция научно-технического прогресса, как рост системности в энергетике, выражающаяся в неуклонном повышении уровня концентрации производства преобразованных видов энергии и энергетических ресурсов, средств их транспорта, а также в усилении централизации распределения первичных энергетических ресурсов и различных видов энергии. В сочетании с усилением взаимозаменяемости в энергетическом хозяйстве эта тенденция приводит к быстрому развитию функциональных систем энергетики в отдельных странах и их перерастанию в ряде случаев в единые энергетические системы страны и даже группы стран. Наглядным примером может служить происходящая интеграция энергетических комплексов стран — членов СЭВ, а также формирование на базе региональных нефтеснабжающих систем Западной Европы, Северной Америки и Японии единой нефтеснаб-жающей системы развитых капиталистических стран.

Возможность сознательной реализации в социалистических странах в процессе долгосрочного планирования прогрессивных объективных тенденций развития энергетики способствовала проявлению прежде всего такой тенденции, как рост системности (на базе концентрации производства и централизации распределения энергии). В результате страны социалистического содружества занимают передовые позиции в формировании и успешном развитии больших систем энергетики.

Удельное отношение длины линий электропередачи к мощности электростанций по мере развития электрификации и увеличения охвата централизованным электроснабжением должно в принципе возрастать, хотя точное соотношение этого показателя установить затруднительно. В частности, на указанное соотношение будет влиять уровень концентрации производства и удельный вес электроемких потребителей. Наоборот, рассредоточение электропотребителей, наличие мелких производственных предприятий и высокий уровень электрификации сельского хозяйства и быта в сельской местности обусловливают более высокое отношение длины линий электропередачи к мощности.

Электрическая энергия открыла новые перспективы концентрации производства, которая была использована для еще большей эксплуатации рабочих и получения невиданно высоких прибылей.

В основу создания энергетических систем в СССР заложен предусмотренный ленинским планам ГОЭЛРО принцип, во-первых, концентрации производства электроэнергии на мощных районных электростанциях и, во-вторых, централизованное электроснабжение всех потребителей от общей электросети.

Идеи, заложенные в плане ГОЭЛРО, и по сей день составляют стержень развития советской энергетики. Выдвинутая Лениным задача «сэкономить труд централизацией», задача всемирной концентрации производства электроэнергии, создания мощных высокопроизводительных машин нашла свое развитие в тенденции роста мощностей станций и единичных мощностей агрегатов. Если в начале осуществления плана ГОЭЛРО на станциях устанавливались в основном турбогенераторы мощностью 10—16 тысяч киловатт, то уже в, 1927 году их единичная мощность достигла 24 тысяч киловатт. В 1937 году на «Электросиле» был создан турбогенератор серии «второй пятилетки» с рекордной для того времени мощностью 100 тысяч киловатт при частоте вращения 3000 оборотов в минуту. В 1959 году были установлены первые турбогенераторы мощностью 160 и 200 тысяч, в 1963 году — мощностью 300 тысяч, в 1967—1968 годах —500 тысяч, в 1971 году —800 тысяч киловатт. В 1980 году на Костромской ГРЭС запущен блок мощностью 1 миллион 200 тысяч киловатт.

Интересные особенности имеет принятая в 1975 г. программа самообеспечения энергией КНР [12]. В качестве основной цели этой экономической программы выдвигалась «опора на собственные силы», включая самообеспечение энергией за счет отказа от импорта дорогого зарубежного оборудования и концентрации производства. Практически же эта политика, как видно на примере гидроэнергетики, сводилась к сооружению тысяч мелких гидроэлектростанций из местных ресурсов и материалов. Некоторые инженеры и экономисты считают этот путь неэффективным и склоняются к сооружению нескольких крупных станций. Тем не менее эти мелкие предприятия обеспечивают 80 % национальной потребности в угле. Большие резервы угля в Северном Китае и Манчжурии расположены вдалеке от основных потребителей на юге страны. Разведочные работы 30-х годов обнаружили 30 угольных месторождений в Центрально-Южном, Юго-Западном и Северо-Западном Китае. Наблюдается активизация геологоразведки и добыча угля; сообщается, что богатые месторождения обнаружены в «тысяче и одном месте». Разработка мелких месторождений намечается и в будущем.

Мощность любого нефтеперегонного завода определяется комбинацией факторов, зависящих от его владельцев, размеров рынка, степени риска, долгосрочных планов и соображений. Имеется явно выраженная экономия от концентрации производства вплоть до уровня 15 млн. т в год. В 1970 г. средняя мощность новых НПЗ составляла 4 млн. т в год, в 1974 г.— 6,4 млн. т, причем 20 % новых проектов строительства НПЗ имели мощность более 10 млн. т в год. Среднегодовая мощность НПЗ к 1980 г. составила 10 млн. т. Указанная тенденция увеличения мощности, а в действительности и возрастания сложности НПЗ, по-видимому, будет продолжаться и в середине 80-х годов. Можно предвидеть не только рост объемов, но и рост требований к эффективности по конечному набору продуктов и к охране окружающей среды, а последнее, в свою очередь, приведет к увеличению требований к качеству продукции и к еще большему усложнению процессов. Можно ожидать сооружения новых НПЗ мощностью до 25 млн. т в год. Несколько НПЗ такой мощностью уже построены. Некоторые другие, построенные много лет назад, например в Абадане (Иран), в Рас Танура (Саудовская Аравия) и т. д., продолжают наращивать мощность. Новые крупные НПЗ стоят очень дорого. По оценке на начало 1975 г. один НПЗ мощностью 25 млн. т в год потребует капиталовложений 1260—1340 млн. долл при сроках строительства 54—60 мес. по сравнению с НПЗ мощностью 2,5 млн. т в год, на строительство которого капиталовложения составят 238 млн. долл. (США). Высокие'затраты могут потребовать привлечения партнеров при строительстве крупных НПЗ.

По виду измеряемой величины приборы выпускают для измерения температуры, давления, расхода и количества, концентрации растворов, уровня, влажности и плотности газов, электрических величин и определения состава (анализа) газов и жидкостей.

ГЛАВА V ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ

§ 21. Понятие о концентрации растворов и классификация приборов

В производственных условиях для непрерывного контроля концентрации растворов применяют специальные приборы, которые в зависимости от назначения и группы измеряемых веществ делятся на солемеры, по которым определяют концентрацию рас-

§ 100. Монтаж отборных устройств для измерения концентрации растворов и для контроля состава газов

§ 106. Монтаж приборов для измерения концентрации растворов

Глава V. Приборы для измерения концентрации растворов...... 69

§ 21. Понятие о концентрации растворов и классификации при- 69

§ 106. Монтаж приборов для измерения концентрации растворов 311

Различают три наиболее часто используемых на практике количественных способа выражения концентрации растворов.

6. Каковы способы измерения концентрации растворов?



Похожие определения:
Конденсаторе определяется
Классификация интегральных
Конденсатором переменной
Конденсаторов применяемых
Конденсатор переменной
Конденсатор включенный
Конечного потребления

Яндекс.Метрика