Изменяются сопротивленияЦелесообразность технического использования синусои-дального тока обусловлена тем, что КПД генераторов, двигателей, трансформаторов и линий электропередачи при синусоидальной форме ЭДС, напряжения и тока получается наивысшим по сравнению с несинусоидальным током. Кроме того, при иных формах изменения тока из-за ЭДС самоиндукции могут возникать значительные перенапряжения на отдельных участках цепи. Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону.
В цепях синусоидальных ЭДС ток и напряжение изменяются синусоидально, поэтому они могут быть представлены вращающимися векторами и законы Кирхгофа записаны в векторной форме.
Следует обратить внимание на то, что петля перемагничи-вания электротехнической стали магнитопроводов трансформаторов относительно «узкая» ( 8.3) и значение амплитуды магнитной индукции Вт для обычных трансформаторов выбирается в пределах 1,2-1,6 Тл, что соответствует примерно точке кривой намагничивания, лежащей на «колене», поэтому в пределах изменения В от В = 0 до В = Вт зависимость тока от магнитной индукции примерно линейная. Поскольку магнитный поток и, следовательно, магнитная индукция изменяются синусоидально, намагничивающий ток также будет изменяться по за-
ние изменяются синусоидально, то для расчета цепи можно пользоваться комплексным методом.
Предположим, что внутренние токи в фазах А, В, С изменяются синусоидально и что якорь вращается слева направо. Тогда за время 1/2Т, в течение которого секция F переместится от щетки а до щетки Ь, ток в этой секции будет изменяться по жирно очерченной части синусоиды А от значения /„лхДО значения /ЯЛ2- За время коммутации Тк секция F переходит из фазы А в фазу В, соответственно ^:ему коммутирующий ток должен измениться от значения iaA2 до значения 1ав\.
• 2-61. Четыре источника энергии Et, Elt E3 я Et, ЭДС которых изменяются синусоидально с амплитудами ?m=60J/X и лампы накаливания с номинальными напряжениями 60 В (Л\) и по 120 В (Лг и Л$) включены по схеме, изображенной на 2.61. Определить выражения мгновенных значений ЭДС источников, при которых все лампы будут иметь нормальный накал, если мгновенное значение ЭДС генератора
При периодическом режиме под воздействием приложенного к линии синусоидального напряжения в любой точке линии напряжение и ток изменяются синусоидально с частотой источника1. Обозначим комплексные действующие значения напряжения и тока на расстоянии х от начала линии через U = U(x) и / = /(*).
При периодическом режиме под воздействием приложенного к линии синусоидального напряжения в любой точке линии напряжение и ток изменяются синусоидально с частотой источника Ч Обозначим комплексные действующие значения напряжения и тока на расстоянии х от начала линии через О — О (х) и / '= / (х).
В цепях синусоидальных ЭДС ток и напряжение изменяются синусоидально, поэтому они могут быть представлены вращающимися векторами и законы Кирхгофа записаны в векторной форме.
Следует обратить внимание на то, что петля перемагничи-вания электротехнической ст;ши магнитопроводов трансформаторов относительно «узкая» ( 8.3) и значение амплитуды магнитной индукции Вт для обычных трансформаторов выбирается в пределах 1,2—1,6 Тл, что соответствует примерно точке кривой намагничивания, лежащей на «колене», поэтому в пределах изменения В от В = 0 до В == Вт зависимость тока от магнитной индукции примерно линейная. Поскольку магнитный поток и, следовательно, магнитная индукция изменяются синусоидально, намагничивающий ток также будет изменяться по за-
в точке с координатой х2 фаза волны равна п:и(х2, ?i)=I/2mX sin (cafi + p^) = t/2mSinn = 0 и т. д. В любой точке линии с координатой х напряжение и ток также изменяются синусоидально и син-фазно. Поскольку амплитуды напряжения и тока вдоль линии неза-
Переменный резистор Rn ( 6.16, а) служит для балансировки каскада или, как говорят, для установки нуля. Это необходимо в связи с тем, что не удается подобрать два абсолютно идентичных транзистора и резисторы с равными сопротивлениями R2, R3. При изменении положения движка потенциометра Rn изменяются сопротивления резисторов, включенных в коллекторные цепи транзисторов, и, следовательно, потенциалы на коллекторах. Перемещением движка потенциометра Rn добиваются нулевого тока в нагрузочном резисторе RH в отсутствие входного сигнала.
Например, в магнитоэлектрических приборах изменение температуры окружающей среды приводит к следующим изменения: изменяются сопротивления измерительной цепи, изменяются упругие свойства пружин, изменяются магнитные свойства постоянного магнита, но последние два явления почти полностью взаимно компенсируются.
Для измерения уровня или объема жидкости часто применяются реостатные преобразователи в сочетании с магнитоэлектрическим измерительным механизмом или логометром. На 82 показан пример применения реостатного преобразователя для измерения уровня жидкости. При измерении положения поплавка /, определяемого уровнем (объемом) жидкости 2, перемещается движок 3, в связи с чем изменяются сопротивления г\ и г2, включенные последовательно с катушками логометра 4. В результате изменяется отношение токов в катушках и показание прибора. Шкала прибора градуируется в значениях измеряемой неэлектрической величины (уровня или объема жидкости). Измерение других неэлектрических величин электрическими методами производится: индукционными и емкостными преобразователями, преобразователями контактного сопротивления (механическая сила, давление); проволочными преобразователями (различные деформации твердых тел); электролитическими преобразователями (концентрация электролитов); индукционными преобразователями (скорость вращения машин, механизмов и т. д.).
При изменении скорости вращения двигателя изменяются сопротивления обмотки В, вследствие чего напряжение между обмоткой и конденсатором UK перераспределяется, что вызывает изменение величины и фазы тока /д. Поэтому равенство н. с. FA и Fg при данном соотношении чисел витков и напряжений обмоток существует только при одной определенной скорости вращения. Таким образом, круговое поле в двигателе имеет место лишь при определенном значении емкости конденсатора, скорости вращения, напряжения и чисел витков обмоток. При изменении какой-либо из этих величин (например, скорости вращения) поле становится эллиптическим. Если поле однофазного конденсаторного двигателя близко к круговому, его рабочие характеристики приближаются к характеристикам трехфазного двигателя. Коэффициент мощности значительно больший и некоторые характеристики могут быть даже более благоприятными, чем у трехфазного двигателя.
стоянная времени обмотки реле невелика (ее можно уменьшить искусственно). 70. Напряжение на выходе потенциометрнческого датчика зависит от питающего напряжения. 71. По этой линии движется сигнал прямой связи. 72. Некоторые автоматы были известны уже в древности. 73. Выделите основной стимул. 74. Правильно, в этом случае сигнал на выходе сумматора лавинообразно нарастает. 75. Правильно, индуктивный датчик относится к параметрическим. 76. Так называется реле, у которого регулируется время срабатывания. 77. Найдите более полный ответ. 78. Индуктивность рабочей обмотки зависит от степени насыщения магнито-провода, а следовательно, от тока угравления. 79. Изменится магнитное состояние магнитопровода, а следовательно, и индуцируемая ЭДС. 80. Положительная обратная связь увеличивает ток холостого хода. 81. От полярности тока управления зависит фаза (а не амплитуда) рабочего тока. 82. ПраЕильно, коэффициент усиления рассматриваемой схемы примерно равен коэффициенту усиления одного усилителя. 83. Правильно, коэффициент усиления мостовой схемы равен учетверенному коэффициенту усиления одного магнитного усилителя. 84. Катушка с ненасыщенным магнитопроводом является линейным элементом. 85. Правильно, индуктивное сопротивление такой катушки — величина постоянная. 86. Рассмотрите рабочую характеристику мостового магнитного усилителя. 87. В рабочей обмотке протекают токи двух усилителей. 88. При любой полярности тока смещения нулевой ток увеличится. 89. Проверьте свои вычисления. 90. Ес-ъ принципиальные соображения. 91. Магнитный поток обмотки управления определяется током управления. 92. Это не единственное достоинство. 93. Это только часть времени срабатывания. 94. Правильно, именно при этом условии сжатие цилиндра приведет к существенному изменению сопротивления датчика. 95. Правильно. 96. Д. Уатт изобрел центробежный регулятор скорости. 97. Правильно, другие перечисленные стимулы имеют второстепенное значение для капиталистического производства. 98. Вычитание названных сигналов — основное условие устойчивости. 99. Правильно, в двухтактной схеме напряжение на выходе зависит только от размера воздушного зазора. 100. Электронным называется реле, соединенное с электронным усилителем. 101. Сднстактный усилитель не реагирует на полярность сигнала управления, это один из его недостатков. 102. Правильно. При этом индуктивное сопротивление обмотки тоже уменьшится. 103. Правильно, перемагничивание магнитопровода будет затруднено и рассматриваемая ЭДС уменьшится. 104. Правильно, обратная снизь увеличивает нулевой ток, если она положительна. 105. При отсутствии тока в обмотке управления рабочий ток этого усилителя равен нулю. 106. Правильно, эти токи всегда направлены встречно. 107. Учтите, что изменяются сопротивления всех четырех плеч мостовой схемы. 108. Правильно, так как возрастут тепловые потери 109. Найдите более полный ответ. 110. Назначение этого сопротивления — другое. 111. Латинское слово «дифференциальный»—-значит «разностный». 112. При изменении тока в обмотке смещения изменится и нулевой ток усилителя. 113. Правильно, кужно разделить число витков обмотки управления на число витков рабочей обмотки. 114. Правильно. 115. Обмотка управления может перегореть. 116. Укажите более полный ответ. 117. Правильно. Отметим, что время нарастания тока в обмотке реле можно регулировать изменяя постоянную времени цепи. 118. В этом случае сжатие или растяжение цилиндра
I. Определите понятия "электрическая цепь", "электрическая схема", "узел", "устранимый узел", "ветвь", "источник ЭДС" и "источник тока". 2. Как выбирают положительные направления для токов ветвей и как связаны с ними положительные направления напряжений на сопротивлениях? 3. Что понимают под ВАХ? 4. Нарисуйте ВАХ реального источника, источника ЭДС, источника тока, линейного резистора. 5. Сформулируйте закон Ома для участка цени с ЭДС, первый и второй законы Кирхгофа. Запишите в буквенном виде, сколько уравнений следует составлять но первому и сколько по второму закону Кирхгофа. Для двух законов Кирхгофа дайте по две формулировки. 6. Чем следует руководствоваться при выборе контуров, для которых следует составлять уравнения по второму закону Кирхгофа. Почему ни R один из этих контуров не должен входить источник тока? 7. Поясните этапы построения потенциальной диаграммы. 8. В чем отличие напряжения от падения напряжения? 9. Охарактеризуйте основные этапы метода контурных токов (МКТ) и метода узловых потенциалов (МУП). При каком условии число уравнений по МУП меньше числа уравнений по МКТ? 10. Сформулируйте принцип и метод наложения. II. Сформулируйте и докажите теорему компенсации. 12. Запишите и поясните линейные соотношения в электрических цепях. 13. Что понимают под входными и взаимными проводимостями? Как их определяют аналитически и как опытным путем? 14. Покажите, что метод двух узлов есть частный случай МУП. 15. Приведите примеры, показывающие полезность преобразования звезды в треугольник и треугольника в звезду. 16. Сформулируйте теорему компенсации и теорему вариаций. 17. Дайте определение активного двухполюсника, начертите две его схемы замещения, найдите их параметры, перечислите этапы расчета методом эквивалентного генератора. 18. Запишите условие передачи максимальной мощности нагрузке. Каков при этом КПД? 19. Покажите, что если в линейной цепи изменяются сопротивления в каких-то двух ветвях, то три любых тока (напряжения) связаны линейной зависимостью вида z = а + Ьх + су. 20. Выведите формулы преобразования треугольника в звезду, если в ветвях треугольника кроме резисторов имеются и источники ЭДС. 21. В электрической цепи известны токи в двух ветвях k и т (Ik и Iт). Сопротивления в этих ветвях получили приращения A Rk и Д Rm. Полагая известными входные и взаимные проводимости ветвей k, т, г, определите приращения токов к ветвях k, т, г, т. е. A Ik Д /m Д /л. 22. Какие топологические матрицы вы знаете? 23. Запишите уравнения по за конам Кирхгофа с использованием матриц [/4] и [/(,.]. 24. Что понимают под обобщенной ветвью? 25. Выразите токи ветвей через контурные токи и матрицу [K.t]. 26. Выразите напряжения ветвей через потенциалы узлов и матрицу [И]. 27. Выведите уравнения метода узловых потенциалов, используя матрицы [A], [g \ и \А]Т. 28. Выведите уравнения контурных токов, используя матрицы [/С,.], [/?„] и л,.'. 29. Охарактеризуйте сильные и слабые стороны матрично-топологического направления теории цепей. 30. Решите задачи 1.2; 1.7; 1.10; 1.13; 1.20; 1.24; 1.33; 1.40; 1.41; 1.45.
В тракт передачи обычно входят: линия связи генератора и приемника, находящихся часто на значительных расстояниях друг от друга; усилители, в которых увеличивается мощность или, как говорят, уровень сигналов; аттенюаторы (ослабители) для снижения уровня сигналов; фильтры для разделения сигналов; корректирующие контуры, включаемые для устранения искажений сигналов; трансформаторы, при помощи которых изменяются сопротивления отдельных участков тракта передачи информации и устраняется гальваническая связь между этими участками. К четырехполюсникам относятся также цепи обратной связи электронных генераторов и усилителей, участки линий передачи электрической (электромагнитной) энергии, цепи регулирования различных •параметров машин (скорости, .давления, напряжения) и т. д.
Векторные диаграммы, представленные на 17.12, поясняют рассмотренные явления. С изменением частоты изменяются сопротивления барьерных и диффузионных емкостей переходов, при этом чем выше частота, тем меньше емкостное сопротивление. Барьерные емкости коллекторного и эмиттерного переходов включены параллельно р-п-переходам и примерно одинаковы, но шунтирующее действие коллекторной барьерной емкости больше, чем эмиттерной, так как сопротивление коллекторного перехода значительно выше, чем эмиттерного. Так как через барьерную емкость коллекторного перехода ответвляется часть тока, то ток коллектора уменьшается, а следовательно, уменьшаются коэффициент передачи (усиления) тока и коэффициент усиления по мощности.
ток /,,. Вследствие этого рамка гальванометра вместе с закрепленным на ней зеркалом отклоняется и свет от лампы Л перераспределяется между фотоэлементами ФЭ1 и ФЭ2. В результате изменяются сопротивления фотоэлементов и распределение напряжения между ними, а следовательно, и потенциал сетки электронной лампы ЭЛ. Анодный ток лампы при этом будет изменяться до тех пор, пока напряжение обратной связи ик не уравновесит е%.
Сопротивления волновых резонаторов изменяются в области резонансов в соответствии с 4.4 и 4.13. Аналогично изменяются сопротивления волновых двухполюсников при малых расстройках в области значений /0 = kXo/4 при k > 2. Поэтому для отрезков линий с потерями (диссипативных волновых двухполюсников) характеристика, представленная на 7.25, должна .быть скорректирована с учетом частотных характеристик резонансных контуров (см. 4.4, 4.13). Скорректированная характеристика сопротивления показана на 7.28, где изобра-
Векторные диаграммы, представленные на 1.36, поясняют рассмотренные явления. С изменением частоты изменяются сопротивления барьерных и диффузионных емкостей переходов, при этом чем выше частота, тем меньше емкостное сопротивление. Барьерные емкости коллекторного и эмиттерного переходов включены параллельно p-n-переходам и примерно одинаковы, но шунтирующее действие коллекторной барьерной емкости больше, чем эмиттерной, так как сопротивление коллекторного перехода значительно выше, чем эмиттерного. Так как через барьерную емкость коллекторного перехода ответвляется часть тока, то ток коллектора уменьшается, а следовательно, уменьшаются коэффициент передачи (усиления) тока и коэффициент усиления по мощности.
5. Как изменяются сопротивления трансформаторов и потери мощности в них с ростом номинального напряжения?
Похожие определения: Изменения свободной Изменения воздушного Изменением геометрических Изменением координаты Изменением питающего Изменением скольжения Изменение чувствительности
|