|
Гармоническую составляющуюПри гармоническом воздействии все переменные в схеме также являются гармоническими. Представим входящие в уравнения переменные в комплексной форме:
1. Анализ амплитудно-фазовых соотношений для тока и напряжения в резисторе, конденсаторе и катушке индуктивности при гармоническом воздействии. Исследование мгновенной, полной, активной и реактивной мощностей в этих элементах.
2. Исследование амплитудно-фазовых соотношений для токов и напряжений при последовательном и параллельном соединениях активного и реактивного компонентов (резистора и конденсатора, резистора и катушки индуктивности). Получение временных диаграмм токов и напряжений при гармоническом воздействии. Исследование связи мгновенной, полной, активной и реактивной мощностей для пассивного двухполюсника.
15. Какими мощностями характеризуются цепи при гармоническом воздействии? Каковы их определения?
2.6. СИМВОЛИЧЕСКИЙ МЕТОД РАСЧЕТА РАЗВЕТВЛЕННЫХ ЦЕПЕЙ ПРИ ГАРМОНИЧЕСКОМ ВОЗДЕЙСТВИИ
Рассмотрим условие баланса мощности в цепях при гармоническом воздействии. В силу справедливости первого и второго законов Кирхгофа для комплексных действующих значений тока / и напряжения С/ в каждой из ветвей рассматриваемой цепи можно записать теорему Телледжена (1.57) в комплексной форме:
Анализируя характер ураннений напряжений и токов в RLC-цепи, фазовых сдвигов между ними при гармоническом воздействии, нетрудно видеть, что они являются частотно-зависимыми. Эта зависимость вытекает непосредственно из зависимости реактивных элементов XL и Хс от частоты со. На 3.2 и 3.3 изображены зависимости Хь('л), Хс(в>), Z(ca), ф(со), определяемые формулами:
2.6. Символический метод расчета разветвленных цепей при гармоническом воздействии ............................................................................................ 46
Большое распространение имеют приборы, показание которых пропорционально максимальному или среднему значению, но шкала про-градуирована в действующих значениях при измерении гармонических величин. Показания этих приборов неправильны при сложном гармоническом воздействии.
Передаточная функция линейного четырехполюсника (частотная характеристика цепи) определяется в стационарном режиме при гармоническом воздействии как отношение комплексной амплитуды сигнала на выходе цепи к комплексной амплитуде сигнала на ее входе. В зависимости от характера сигналов на входе • выходе цепи передаточная функция может иметь размерность проводимости У(со) =72/t/i, сопротивления Z(co) = U2/Ii, либо быть безразмерной величиной
ного сопротивления перейти к операторнзму, достаточно /ш заменить на р. Сопротивление цепи в операторной форме — операторное сопротивление Z (р) — есть новая, более общая форма сопротивления. Например, комплексное сопротивление Z (jw) можно рассматривать как частный случай 2 (р), когда комплексная переменная р принимает чисто мнимое значение, равное /со. Все действия над операторными сопротивлениями производятся так же, как и над Z(/co), т. е. аналогичны всем действиям, применяемым в символическом методе. Подчерк! ем, что это сходство чисто формальное. Принципиальная разница ошнь велика. Применение операторного сопротивления позволяет ренать задачи, относящиеся к любому режиму в цепи при любой фор vie внешнего воздействия. Символический метод и связанное с ним понятие комплексного сопротивления позволяют решать задачи лишь при гармоническом воздействии и в установившемся режиме. На[ яду с операторным сопро-
Сопоставив график изменения намагничивающего тока с графиком, полученным путем сложения двух синусоид, частота одной из которых в 3 раза больше частоты другой ( 8.4), можно заметить, что при насыщении магнитопровода намагничивающий ток прежде всего содержит значительную третью гармоническую составляющую. Различие в графиках намагничивающего тока на 8.3, #Й<8.4 объясняется тем, что в первом случае ток содержит кроме первой^ и третьей гармоник также и другие гармонические составляющие.
Разложим прямоугольную кривую намагничивающей силы, имеющую максимальную высоту Р^п ао выражению (1.22), в ряд §уръе и выделим первую гармоническую составляющую, отбросив все остальные, как величины второго порядка. На 1.8, б первая гармоническая составляющая намагничивающей силы изображена в виде косинусоиды (штрих-пунктирная кривая). Be максимальное значение по теореме Фурье равно
Под парой полюсов э.ц.с. имеет трапецеидальную форму ( 1.18). ЗыцелиВ иа э.д.с. первую гармоническую составляющую^ можно считать, что э.ц.с. под парой полюсов изменяется синусоидально.
В пазы статора основного генератора уложена трехфазная гармоническая обмотка, рассчитанная на третью гармоническую составляющую магнитного потока (/г=1200Гц). Обмотка выполнена проводом ПНЭТ-имид диаметром 0,49 мм. Каждая из фаз гармонической обмотки укладывалась независимо от остальных со сдвигом на 120 электрических градусов. Это позволяло проводить экспериментальные исследования при питании системы возбуждения
форма которых будет резко отличаться от синусоидальной. При включении двойного Т-образного моста в качестве цепи отрицательной обратной связи условие баланса амплитуд будет выполняться только для одной частоты. Это объясняется тем, что двойной Т-образный мост не пропускает гармоническую составляющую с частотой /о ( 7.10, б), вследствие чего условие баланса амплитуд будет выполняться только для частоты /о, а для всех остальных частот коэффициент усиления усилителя снизится и произведение I/CI IPI будет меньше единицы. Регулировку частоты колебаний автогенератора осуществляют изменением либо сопротивлений всех резисторов, либо емкостей всех конденсаторов двойного Т-образного моста. В противном случае нарушатся избирательные свойства моста. В данной схеме частота генерации f0=l/(2nRC). Если включить двойной Т-образный мост в схему автогенератора без эмиттерного повторителя, то мост будет сильно шунтироваться усилителем и условия самовозбуждения нарушатся.
Сопоставив график изменения намагничивающего тока с графиком, полученным путем сложения двух синусоид, частота одной из которых в 3 раза больше частоты другой ( 8.4), можно заметить, что при насыщении магнитопровода намагничивающий ток прежде всего содержит значительную третью гармоническую составляющую. Различие в графиках намагничивающего тока на 8.3, <ГЯ 8.4 объясняется тем, что в первом случае ток содержит кроме первой и третьей гармоник также и другие гармонические составляющие.
Сопоставив график изменения намагничивающего тока с графиком, полученным путем сложения двух синусоид, частота одной из которых в 3 раза больше частоты другой ( 8.4), можно заметить, что при насыщении магнитопровода намагничивающий ток прежде всего содержит значительную третью гармоническую составляющую. Различие в графиках намагничивающего тока на 8.3, Яжв.4 объясняется тем, что в первом случае ток содержит кроме передо'я третьей гармоник также и другие гармонические составляющие.
Структурная схема /?С-автогенераторов аналогична показанной на 5.1. Чтобы из всего возможного спектра частот /?С-автогенератор генерировал лишь одну какую-либо гармоническую составляющую, условия самовозбуждения генератора [формулы (5.4), (5.5)] должны быть выполнены на этой частоте.
Пели сигнал (II) подвести к электрической цепи, состоящей из резистора К и конденсатора С, как это показано на рисунке, то выходной сигнал "вых О будет содержать только гармоническую составляющую с частотой 2fo, а постоят ставляющая в нем бу
Аналогичное явление наблюдается и в случае более сложных сигналов. Проиллюстрируем это утверждение на примере с качелями. Если качели раскачивать периодическими толчками, то качели совершают гармонические колебания. Эти колебания являются, по существу, выходным сигналом в физической системе — качелях. Входным же сигналом в этой системе являются толчки, т. е. импульсный сигнал сложной формы. Как и любой сложный сиг-пал, этот входной сигнал имеет спектр, состоящий из множества гармонических составляющих с разными частотами. Физическая же система — качели — выделяет из этого сложного сигнала одну гармоническую составляющую.
Пусть полупроводник в плоскости *=0 освещается монохроматическим светом, интенсивность которого изменяется во времени по закону /=/,-}- /о exp (i
Похожие определения: Генератора рассмотрим Генератора следовательно Генератора становится Гармонические составляющие Генераторе постоянного Генераторное напряжение Генератором напряжения
|
|
|