Формулируется следующим

Спектральный анализ тока в данном случае позволяет определить постоянную составляющую тока /0, амплитуды первой и второй гармоник обоих колебаний и амплитуды комбинационных колебаний первого порядка. При этом можно воспользоваться формулами, приведенными в методических указаниях к предыдущей задаче, при а3 = 0. Постоянная составляющая тока, амплитуды вторых гармоник колебаний и амплитуды комбинационных колебаний первого порядка получаются одинаковыми при представлении характеристики полиномами второй и третьей степени. Амплитуды первых гармоник при аппроксимации полиномом второй степени получаются такими:

Для повторителя в соответствии с формулами, приведенными в табл. 11.7,

Расчет конденсаторов. Конденсаторы планарной конструкции (см. 12.4, в) могут иметь малое значение емкости и поэтому их следует применять, если емкость не должна превышать 5 пФ. Если емкость превышает 5 пФ, то применяют трехслойные конденсаторы. При их расчете нужно пользоваться формулами, приведенными в гл. 6. Следует иметь в виду, что эти формулы не учитывают влияния краевого эффекта, который может быть значительным у микроконденсаторов, имеющих малые размеры обкладок. Учесть влияние краевого эффекта можно, воспользовавшись формулой

Между двумя параллельно расположенными проводниками могут появиться гальванические связи за счет утечек по изоляции, а также емкостные. Однако для определения емкости между двумя параллельными проводниками нельзя пользоваться формулами, приведенными в гл. 6, так как они справедливы только в тех случаях, когда расстояние между пластинами значительно меньше размеров, определяющих площадь взаимного перекрытия пластин.

Ре ш е ни е. Для решения задачи воспользуемся формулами, приведенными в § 2.8.

При равномерном распределении пазов в магнитопроводах можно пользоваться формулами, приведенными в табл. 4.2.

Значение Kr = Е* г. Следовательно, можно утверждать, что нарушение условия (9.17) и появление самораскачивания будет стимулироваться уменьшением угла (малые нагрузки), увеличением активного сопротивления г в цепи статора и увеличением возбуждения Е. Еще раз подчеркнем, что соотношение (9.17) дает только грубую качественную характеристику процесса. Для получения количественных соотношений рекомендуется пользоваться методами и формулами, приведенными в [Л. 7, § 3.3, 3.4, 3.5].

Целесообразно пользоваться этими методами и для расчета средних значений за небольшие промежутки времени (эффективных нагрузок4 подстанции, фидеров и проводов контактной сети; потерь напряжения в сети до поездов за время хода их по рассматриваемому блок-участку или перегону, потерь энергии). В этом случае можно использовать рассмотренные в гл. 3 методы в их упрощенном виде. Степень упрощения выбирается в зависимости от характера профиля. Так, при резко меняющихся токах поездов по перегонам следовало бы брать первую степень упрощения, заменяя действительные значений тока их средними на каждом элементе профиля, где непрерывно потребляется ток. При более равномерном потреблении энергии можно брать средние значения токов по перегонам (особенно, если перерывы в потреблении токов незначительны). В случае равномерного потребления энергии по пере-" гонам можно брать среднее значение тока по всей рассматриваемой зоне. Все средние значения, рассчитываемые за длительный период, измеряемый, например, годами, как это выполняется при определении потерь энергии для - экономических расчетов, можно находить, пользуясь расчетными.формулами, приведенными в п. 7.12. Если исходные данные представлены в виде сведений о размерах движения, все средние значения, как правило, должны определяться G помощью формул, приведенных в п. 7.8—7.13. Проверяя средние значения, соответствующие определенным режимам работы, характеризующимся твердым графиком движения (например, при работе е полным использованием пропускной способности), расчеты еледует ввести методами анализа графика движения. И в этом случае, однако, проще пользоваться теми же расчетными формулами. Выбирать же формулы, дающие различную степень точности, необходимо в зависимости от конкретных условий. При неизменном по длине зоны грузопотоке и равномерном потреблении тока можно пользоваться приближенными формулами. В противном случае следует применять формулы в их общем виде.

Отметим еще раз, что формулами, приведенными в настоящем параграфе, можно пользоваться для вычисления потенциала только в том случае, если заряды распределены в конечной области пространства. В частности, предпоследней формулой можно пользоваться, если длина проводов конечна. Действительно, эта формула основана на выражении для потенциала точечного заряда, которое получено в предположении, что потенциал бесконечно удаленных точек равен нулю. Однако, как выше было показано, в случае бесконечно длинных проводов потенциал в бесконечности не может быть принят равным нулю, так как при этом на всех конечных расстояниях потенциал получился бы бесконечно большим. Соот-

После приведения к сопоставимому виду для каждого варианта определяются капитальные вложения, эксплуатационные расходы и суммарные приведенные затраты в соответствии с формулами, приведенными ниже.

При расчете нестандартных насыпных шарикоподшипников,. у которых нет определенных соотношений, между размерами отдельных деталей, можно пользоваться формулами, приведенными в работе Г. Штельрехта [80].

Закон элекурошгштндй индукции лежит в основе работы всех электрических машин. По Фараде» он формулируется следующим образом: при пересечении силовых линий магнитного поля движущимся проводником в нем на^оциася электроцвижущая сила (э.ц.с.). .

в качестве оптимизируемого критерия функцию ф!(л:). Задача формулируется следующим образом: найти

Метод безусловного поиска экстремума является простейшим методом оптимизации и применяется тогда, когда функция качества ТС представлена в виде аналитического выражения, дифференцируемого по совокупности независимых переменных во всем пространстве. К нему сводятся и случаи, когда ограничения -на область изменения независимых переменных по каким-либо причинам не могут быть формализованы. Задача формулируется следующим образом: найти x*^Rn, такое, что

ча оптимизации формулируется следующим образом: найти х* такое, что

Задача оптимального управления формулируется следующим

В этом случае задача проектирования оптимальных систем межоперационного контроля формулируется следующим образом.

он формулируется следующим образом: циркуляция вектора напряженности магнитного поля Н по замкнутому контуру равна алгебраической сумме токов 2 / , охватываемых этим контуром; знак тока определяется по правилу право-ходового винта. Если длина / измеряется в метрах, ток / — в амперах, то напряженность Н имеет размерность ампер на метр. В случае, когда контур интегрирования охватывает w витков катушки, через которую проходит ток /, закон полного тока принимает вид

Постановка задачи оптимального проектирования заземляющего устройства. Применительно к ЗУ оптимизационная задача формулируется следующим образом: необходимо найти конструктивные параметры ЗУ данной электроустановки, требующие минимальных приведенных затрат:

Классическая задача синтеза двухполюсника формулируется следующим образом: задана одна из функций цепи, Z(p) или У (р) • Выполняются все условия, гарантирующие принадлежность ее к функциям физически реализуемых устойчивых двухполюсников. Требуется найти структуру цепи и номиналы входящих в нее элементов.

Задача оптимального распределения нагрузки формулируется следующим образом: найти минимум часовых переменных затрат на производство электроэнергии в энергосистеме

Задача оптимального распределения нагрузки формулируется следующим образом: найти минимум часовых переменных затрат на производство и передачу электроэнергии в энергосистеме



Похожие определения:
Физически невозможно
Физической осуществимости
Физическое содержание
Фланцевое соединение
Фарфоровыми изоляторами
Формирования изображения
Формирование структуры

Яндекс.Метрика