Аксиально радиальную

На 5.10 приведена конструкция с вращающимися аксиально подвижными узлами. Она отличается от предыдущей тем, что в нижнем / и верхнем 7 привалочных фланцах неподвижно закреплены графитовые кольца 6 и 10. Стальныне кольца 5, 9, имеющие подвижность в аксиальном направлении, закреплены в диске 4, который вращается вместе с валом.

При радиальной вентиляции для повышения ее эффективности на внутренней части подшипниковых щитов крепят направляющие воздух щитки, выполняемые из листовой стали в виде воронок. Щитки располагают на расстоянии 5—7 мм от торцов лопаток ротора в аксиальном направлении.

Наружные кольца подшипников крепят по торцам подшипниковыми крышками, фиксирующими расположение подшипников в аксиальном направлении. Внутреннее кольцо подшипника насаживается на вал с плотной посадкой, а наружное входит во втулку подшипникового щита подвижно, так что при разборке машины подшипники остаются на валу. Этим самым облегчается как сборка, так и разборка машины.

Машины с дисковым якорем ( 12.8) имеют плоскую печатную обмотку якоря, нанесенную на тонкий диск из немагнитного материала (керамики, текстолита и т. п.). Возбуждение осуществляется постоянными магнитами с полюсными наконечниками, выполненными в виде кольцевых сегментов. Создаваемый ими магнитный поток проходит в аксиальном направлении через два воздушных зазора и дисковый якорь с печатной обмоткой и замыкается по двум кольцам, изготовленным из магнитно-мягкой стали; кольца служат боковыми ярма-ми. Постоянные магниты или электромагниты могут быть расположены по одну сторону диска как показано на 12.8, или симметрично с обеих сторон.

При радиальной вентиляции для повышения ее эффективности на внутренней части подшипниковых щитов крепят направляющие воздух щитки, выполняемые из листовой стали в виде воронок. Щитки располагают на расстоянии 5—7 мм от торцов лопаток ротора в аксиальном направлении.

Наружные кольца подшипников крепят по торцам подшипниковыми крышками, фиксирующими расположение подшипников в аксиальном направлении. Внутреннее кольцо подшипника насаживается ца вал с плотной посадкой, а наружное входит во втулку подшипникового щита подвижно, так что при разборке машины подшипники остаются на валу. Этим самым облегчается как сборка, так и разборка машины.

Подшипниковые щиты выполняются из сплава АЛ-2. Отверстие под подшипник армировано стальной втулкой. Щиты двигателей большой мощности выполняются из чугуна. Для упрочнения конструкции щиты имеют ребра. В двигателях серии 4А одна подшипниковая опора со стороны вала плавающая, а вторая — фиксирующая. Подшипник, устанавливаемый в фиксирующей опоре, воспринимает радиальную и осевую нагрузки. Подшипник в плавающей опоре свободно перемещается в аксиальном направлении, предотвращая заклинивание при отклонении от предельных размеров и тепловых расширениях. Подшчпнико-вый узел состоит из подшипников, подшипниковых крышек и элементов уплотнения. Подшипниковые узлы выполняются с устройством для пополнения смазки, а также с подшипниками, имеющими двустороннее уплотнение и постоянно заложенную смазку, рассчитанную на весь срок службы.

Высшие гармоники поля наряду с 1-й гармоникой оказывают влияние на моменты, действующие в аксиальном направлении, и на радиальные силы. Изучение этих сложных взаимодействий выходит за рамки данного курса.

Выполнение ротора с постоянными магнитами может быть весьма разнообразным: в виде звездочки, цилиндра, намагниченного в радиальном или аксиальном направлении, и др. В последнее время в качестве движущейся части машины стали применять ферромагнитную резину, когда постоянные магниты вкраплены в резину, которая может иметь различную форму.

В индукторном генераторе магнитный поток пульсирует не только в зубцах, но и в ярме, так как при вращении ротора изменяется магнитное сопротивление для потока возбуждения. Чтобы уменьшить пульсации потока в магнитопроводе, индукторные машины выполняют с двумя статорами / ( 4.96) и двумя магнитопроводами ротора 2, смещенными относительно друг друга таким образом, что общее магнитное сопротивление машины при вращении ротора практически не изменяется, а поток пульсирует только в зубцовых зонах. В индукторном генераторе с аксиальным возбуждением обмотка возбуждения 3 создает поток, замыкающийся в аксиальном направлении, а в зубцовой зоне — в радиальном. Обмотка переменного тока расположена в пазах 4. На индукторе имеются зубцы 5, создающие пульсации индукции в зазоре машины.

1.32. Распределение индукции в воздушном зазоре в аксиальном направлении

В зависимости от направления движения воздуха (газа) внутри машины различают аксиальную, аксиально-радиальную и радиальную схемы вентиляции.

Особенности конструктивного исполнения отдельных типов машин с косвенным воздушным охлаждением определили и их схему вентиляции: крупные машины постоянного тока и синхронные двигатели выполняются преимущественно с радиальной схемой вентиляции. Асинхронные машины большой мощности имеют радиальную, аксиальную и аксиально-радиальную схемы.

Во всех сериях применяют воздушное охлаждение с самовентиляцией. В машинах серии СД2 принята согласная радиальная система вентиляции. В серии СДН2 применена согласная система вентиляции, причем при активной длине магнитопровода статора меньше 44 см используют аксиально-радиальную схему, а при длинах больше 44 см — радиальную. У закрытых машин серии СДНЗ-2 вентиляция происходит по замкнутому циклу через встроенный воздухоохладитель 24, который у большинства машин размещают в верхней части корпуса. Схему вентиляции для машин серии выбирают в зависимости от окружной скорости ротора и длины статора. При окружных скоростях ротора более 40 м/с применяют согласную радиальную вентиляцию с осевым вентилятором, при скоростях от 20 до 35 м/с и активной длине статора машины до 40 см — согласную аксиально-радиальную систему с коническим венти-

В зависимости от направления охлаждающего потока воздуха системы охлаждения подразделяются на: а) аксиальную — поток вдуешь машины ( 6.5, а и б); б) радиальную — поток поперек машины ( 6.6) и в) аксиально-радиальную. Большее распространение получила аксиальная система охлаждения (см.

В зависимости от направления охлаждающего потока воздуха системы охлаждения подразделяются на: а) аксиальную — поток вдоль машины ( 6.5, а и б); б) радиальную — поток поперек машины ( 6.6) и в) аксиально-радиальную. Большее распространение получила аксиальная система охлаждения (см. 6.5, а).

Во всех сериях применяют воздушное охлаждение с самовентиляцией. В машинах серии СД2 принята согласная радиальная система вентиляции. В серии СДН2 применена согласная система вентиляции, причем при активной длине магни-топровода статора меньше 44 см используют аксиально-радиальную схему, а при длинах больше 44 см — радиальную. У закрытых машин се-

ную аксиально-радиальную систему с коническим вентилятором, при скоростях от 20 до 30 м/с, но при длине статора свыше 41 см, — согласную радиальную с коническим

Явнополюсные синхронные машины с горизонтальным валом обычно имеют аксиально-радиальную вентиляцию. У двигателя, изображенного на 19-9, воздух засасывается по обоим торцам машины с помощью вентиляционных лопаток на ободе ротора, затем проходит между полюсами и по воздушному зазору, далее через радиальные каналы в сердечнике статора и выпускается

В зависимости от направления движения воздуха (газа) внутри машины различают аксиальную, аксиально-радиальную и радиальную схемы вентиляции.

Особенности конструктивного исполнения отдельных типов машин с косвенным воздушным охлаждением определили и их схему вентиляции: крупные машины постоянного тока и синхронные двигатели выполняются преимущественно с радиальной схемой вентиляции. Асинхронные машины большой мощности имеют радиальную, аксиальную и аксиально-радиальную схемы.

Во всех сериях применяют воздушное охлаждение с самовентиляцией. В машинах серии СД2 принята согласная радиальная система вентиляции. В серии СДН2 применена согласная система вентиляции, причем при активной длине магнитопровода статора меньше 44 см используют аксиально-радиальную схему, а при длинах больше 44 см — радиальную. У закрытых машин серии СДНЗ-2 вентиляция происходит по замкнутому циклу через встроенный воздухоохладитель 24, который у большинства машин размещают в верхней части корпуса. Схему вентиляции для машин серии выбирают в зависимости от окружной скорости ротора и длины статора. При окружных скоростях ротора более 40 м/с применяют согласную радиальную вентиляцию с осевым вентилятором, при скоростях от 20 до 35 м/с и активной длине статора машины до 40 см — согласную аксиально-радиальную систему с коническим вентилятором, при скоростях от 20 до 30 м/с, но при длине статора свыше 41 см — согласную радиальную с коническим вентилятором. Вентиляторы машин 22 (см. 10.3) прикрепляют к ободу ротора. Для направления потока воздуха к подшипниковым щитам некоторых машин прикрепляют диффузоры 23. На 10.5, а в качестве примера показана схема согласной радиальной (левый рисунок) и согласной ак-



Похожие определения:
Амплитудные искажения
Амплитудным вольтметром
Амплитудной модуляцией
Амплитудно частотный
Амплитудно модулированных
Амплитудой колебаний
Амплитуду напряжения

Яндекс.Метрика